Riemannian metrics on locally projectively flat manifolds
نویسندگان
چکیده
منابع مشابه
On a class of locally projectively flat Finsler metrics
In this paper we study Finsler metrics with orthogonal invariance. We find a partial differential equation equivalent to these metrics being locally projectively flat. Some applications are given. In particular, we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.
متن کاملSchouten curvature functions on locally conformally flat Riemannian manifolds
Consider a compact Riemannian manifold (M, g) with metric g and dimension n ≥ 3. The Schouten tensor Ag associated with g is a symmetric (0, 2)-tensor field describing the non-conformally-invariant part of the curvature tensor of g. In this paper, we consider the elementary symmetric functions {σk(Ag), 1 ≤ k ≤ n} of the eigenvalues of Ag with respect to g; we call σk(Ag) the k-th Schouten curva...
متن کاملLocally conformal flat Riemannian manifolds with constant principal Ricci curvatures and locally conformal flat C-spaces
It is proved that every locally conformal flat Riemannian manifold all of whose Jacobi operators have constant eigenvalues along every geodesic is with constant principal Ricci curvatures. A local classification (up to an isometry) of locally conformal flat Riemannian manifold with constant Ricci eigenvalues is given in dimensions 4, 5, 6, 7 and 8. It is shown that any n-dimensional (4 ≤ n ≤ 8)...
متن کاملProjectively Flat Finsler Metrics of Constant Curvature
It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...
متن کاملFlat Homogeneous Pseudo-Riemannian Manifolds
The complete homogeneous pseudo-Riemannian manifolds of constant non-zero curvature were classified up to isometry in 1961 [1]. In the same year, a structure theory [2] was developed for complete fiat homogeneous pseudo-Riemannian manifolds. Here that structure theory is sharpened to a classification. This completes the classification of complete homogeneous pseudo-Riemannian manifolds of arbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Mathematics
سال: 2002
ISSN: 1080-6377
DOI: 10.1353/ajm.2002.0016